Difference between revisions of "Brain-computer interfaces"

From Lesswrongwiki
Jump to: navigation, search
(Clearer examples)
Line 1: Line 1:
 
{{wikilink}}
 
{{wikilink}}
A '''Brain-computer interface''' or '''BCI''' is a direct communications link between a brain and a computer. BCIs have been proposed as a means by which a [[superintelligence]] could be created. Present developments of BCIs consists only of aiding those with disabilities, developing prostheses such as robotic arms, cochlear and retinal implants. There is no significant technical difference between restoring normal functionality and enhanced functionality, however. Developing BCIs is a task which is aided enormously by the [[wikipedia:Neuroplasticity| brain's dynamic neural network]], permitting growth and healing - and the interpretation of new sensory input.
 
  
Although many previously foreseen uses of BCIs are provided today by indirect computer links, many innovative possibilities remain.
+
A '''Brain Computer Interface (BCI)''' is the generic term used to describe any kind of system that serves as a communication bridge between the brain (human or not) and an artificial module. It’s a field of research in which wide investment has been made since the 1970’s, especially in the clinical fields and systems’ enhancement.
Senses that the brain already understands, like sight, might easily be enhanced; A police officer might gain an eye on the back of his head, an engineer vision stretching from infrared to ultraviolet. Already [http://intelligence.org/brain-computer-interfaces/ basic computer mind reading] is developing; one day, you could see an unbroken stream of your recorded thoughts, maybe even swapping your experiences perfectly with someone else. An implant stocked with neurochemicals could allow a user to consciously alter their brain chemistry and wake refreshed, concentrate deeply, think creatively, and need less sleep.
+
Generally speaking, any kind of brain activity that can be recorded can be used as a means of communicating with another system. Through the use of statistical classification techniques it’s possible to associate certain states or characteristics of the recorded signal – which the experiment subject learns to control - to any procedure, usually mediated by a computer.
 +
  
A BCI might also permit the transfer of a human mind onto a digital substrate, permitting immortality and all the possibilities [[whole brain emulation]] implies. It is also possible that the development of BCIs could lead to a dystopian world with actual mind reading or even mind control. Furthermore, street drugs will be obsolete in the face of [[Wireheading| direct stimulation of the brain's pleasure centers]].
+
== Different ways of measuring the brain and kinds of BCIs ==
  
 +
Throughout the evolution of Cognitive Neuroscience, many techniques have been developed to help us look and better understand the way the brain works. They range from imaging techniques (like MRI, fMRI, fNIRS or PET), to electrophysiological ones (like EEG, EcG or MEG). While the first category is usually used to obtain high resolution images of brain structures and the second one to register and analyze the electrical activity produced by the brain, with a high temporal resolution – which is why they are the ones mainly used in the field of BCI’s.
  
==External Links==
 
  
*[http://intelligence.org/brain-computer-interfaces/ Tech Summary: Brain-Computer Interfaces]
+
== EEG BCIs ==
 +
 
 +
As mentioned above, the registering of the electroencephalographic (EEG) activity in a non-invasive way allows us to peak the brain functioning with a high temporal resolution – furthermore, it is now well established that different brain states produce distinct observable activity. With the help of electrodes placed on the scalp, it is possible to feed this activity and their respective variations and patterns to any system capable of classifying and detecting them in real time and act accordingly (making this a field highly interconnected to that of machine learning).
 +
 
 +
 
 +
== Practical applications ==
 +
 
 +
Following closely the developments in signal processing and classification, along with the increasing computational power available, the field of BCI’s was firstly researched as a communication means (for people unable to move, for instance) through the detection of ERPs – event related potentials, small variations of amplitude associated to the presentation of certain stimuli - as well as a way of automatically detecting epileptic seizures. Also, much owing to the first and major financers of such research, the DARPA, the use of BCIs has been always closed associated to the military field, mainly regarding the detection of mental states of fatigue and attention variations, which has led to the development of informatics systems capable of adapting to the mental state of the user.
 +
 
 +
Currently we have available a considerable range of both research and commercial applications of EEG based BCI systems, and such field is due to receive increased attention in the next through the developing of increasingly efficient classification algorithms and computer power and the cognitive augmentation it might bring.
  
*[http://thinktechuk.wordpress.com/ ThinkTech] A blog dedicated to BCI developements
 
  
*[http://www.kurzweilai.net/people-with-paralysis-control-robotic-arms-using-brain-computer-interface Paralyzed patient controls robot arm using BCI] Article from KurzweilAI
+
== Potential applications ==
  
*[http://www.youtube.com/watch?v=ogBX18maUiM Demonstration of paralyzed patient using robot arm] from Nature Magazine YouTube
+
Although the EEG has been the main technique used for the development of such systems, it has been shown to be possible to integrate electronic controllers directly in the functioning of single cells or even networks. The permanent implant of devices for interpretation and feeding of cortical activity has also been demonstrated.  
 +
This has led to a renewed interest in the field and the exploration of new hypothesis, like drug rehabilitation through the detection of relevant cues and stimulation of the brain reward system, rehabilitation after strokes or lesion and even direct transmission of patterns of thought between subjects.
  
*[http://www.youtube.com/watch?v=g0rRvBd7Dew&feature=endscreen&NR=1 Demonstration of a blind patient with a Retinal Implant reading] from Discovery Magazine YouTube
 
  
*[http://mindstalk.net/vinge/vinge-sing.html Achieving the Singularity with Brain-computer interfaces] by Vernor Vinge
+
==External Links==
  
*[http://www.amazon.co.uk/Beyond-Boundaries-Neuroscience-Connecting-Machines---And/dp/0805090525/ref=sr_1_1?ie=UTF8&qid=1339423006&sr=8-1 Beyond Boundaries] by Miguel Nicolelis on Amazon.
+
*
 +
*
 +
*
 +
*
 +
*
 +
*
  
*[http://www.sim.me.uk/neural/JournalArticles/Bamford2012IJMC.pdf A Framework for approaches to transfer the Mind's Substrate] by Sim Bamford
 
  
 
==See Also==
 
==See Also==

Revision as of 07:45, 11 September 2012

Smallwikipedialogo.png
Wikipedia has an article about


A Brain Computer Interface (BCI) is the generic term used to describe any kind of system that serves as a communication bridge between the brain (human or not) and an artificial module. It’s a field of research in which wide investment has been made since the 1970’s, especially in the clinical fields and systems’ enhancement. Generally speaking, any kind of brain activity that can be recorded can be used as a means of communicating with another system. Through the use of statistical classification techniques it’s possible to associate certain states or characteristics of the recorded signal – which the experiment subject learns to control - to any procedure, usually mediated by a computer.


Different ways of measuring the brain and kinds of BCIs

Throughout the evolution of Cognitive Neuroscience, many techniques have been developed to help us look and better understand the way the brain works. They range from imaging techniques (like MRI, fMRI, fNIRS or PET), to electrophysiological ones (like EEG, EcG or MEG). While the first category is usually used to obtain high resolution images of brain structures and the second one to register and analyze the electrical activity produced by the brain, with a high temporal resolution – which is why they are the ones mainly used in the field of BCI’s.


EEG BCIs

As mentioned above, the registering of the electroencephalographic (EEG) activity in a non-invasive way allows us to peak the brain functioning with a high temporal resolution – furthermore, it is now well established that different brain states produce distinct observable activity. With the help of electrodes placed on the scalp, it is possible to feed this activity and their respective variations and patterns to any system capable of classifying and detecting them in real time and act accordingly (making this a field highly interconnected to that of machine learning).


Practical applications

Following closely the developments in signal processing and classification, along with the increasing computational power available, the field of BCI’s was firstly researched as a communication means (for people unable to move, for instance) through the detection of ERPs – event related potentials, small variations of amplitude associated to the presentation of certain stimuli - as well as a way of automatically detecting epileptic seizures. Also, much owing to the first and major financers of such research, the DARPA, the use of BCIs has been always closed associated to the military field, mainly regarding the detection of mental states of fatigue and attention variations, which has led to the development of informatics systems capable of adapting to the mental state of the user.

Currently we have available a considerable range of both research and commercial applications of EEG based BCI systems, and such field is due to receive increased attention in the next through the developing of increasingly efficient classification algorithms and computer power and the cognitive augmentation it might bring.


Potential applications

Although the EEG has been the main technique used for the development of such systems, it has been shown to be possible to integrate electronic controllers directly in the functioning of single cells or even networks. The permanent implant of devices for interpretation and feeding of cortical activity has also been demonstrated. This has led to a renewed interest in the field and the exploration of new hypothesis, like drug rehabilitation through the detection of relevant cues and stimulation of the brain reward system, rehabilitation after strokes or lesion and even direct transmission of patterns of thought between subjects.


External Links


See Also